
Under-approximation of Reachability in
Multivalued Asynchronous Networks

Maxime Folschette,a,1 Loïc Paulevé,b Morgan Magnina

and Olivier Rouxa
a LUNAM Université, École Centrale de Nantes, IRCCyN UMR CNRS 6597

(Institut de Recherche en Communications et Cybernétique de Nantes)
1 rue de la Noë - B.P. 92101 - 44321 Nantes Cedex 3, France.

b ETH Zürich, Switzerland.
BISON group, Automatic Control Laboratory, ETH Zürich

Physikstrasse 3, 8092 Zurich, Switzerland.

Abstract

The Process Hitting is a recently introduced framework designed for the modelling of concurrent systems.
Its originality lies in a compact representation of both components of the model and its corresponding
actions: each action can modify the status of a component, and is conditioned by the status of at most one
other component. This allowed to define very efficient static analysis based on local causality to compute
reachability properties. However, in the case of cooperations between components (for example, when two
components are supposed to interact with a third one only when they are in a given configuration), the
approach leads to an over-approximated interleaving between actions, because of the pure asynchronous
semantics of the model.
To address this issue, we propose an extended definition of the framework, including priority classes for
actions. In this paper, we focus on a restriction of the Process Hitting with two classes of priorities and a
specific behaviour of the components, that is sufficient to tackle the aforementioned problem of cooperations.
We show that this class of Process Hitting models allows to represent any Asynchronous Discrete Networks,
either Boolean or multivalued. Then we develop a new refinement for the under-approximation of the
static analysis to give accurate results for this class of Process Hitting models. Our method thus allows to
efficiently under-approximate reachability properties in Asynchronous Discrete Networks; it is in particular
conclusive on reachability properties in a 94 components Boolean network, which is unprecedented.

Keywords: qualitative modelling, model abstraction, static analysis, asynchronous network

1 Introduction

Discrete modelling frameworks for biological networks is an active research field
where formal methods have proved that they were very powerful. Such a work
started in the seventies. It was later enriched in many directions and widely used
to elucidate many biological questions. Among these questions, a major one is to

1 Maxime.Folschette@irccyn.ec-nantes.fr

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 299 (2013) 33–51

1571-0661/$ – see front matter © 2013 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2013.11.004

Maxime.Folschette@irccyn.ec-nantes.fr
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2013.11.004
http://dx.doi.org/10.1016/j.entcs.2013.11.004
http://www.sciencedirect.com

understand precisely how biological systems evolve and behave; why and how they
change their usual behaviours. . . This leads to questions about the reachability
(possible or inevitable) of some states. The ultimate goal is to discover how it could
be possible to prevent biological systems from reaching some pathological states.

Of course, such formal models on which analyses are performed are abstract rep-
resentations of the actual studied systems. They are associated with parameters that
have to be synthesised to give the most faithful representation of the real systems
with their observed behaviours. As a matter of fact, the abstractions we get are more
or less rough or accurate. Usual formal frameworks for such modelling activities are
state-transition systems or process algebras. We developed a quite similar frame-
work named the Process Hitting [10], consisting in a restriction where the evolution
of a component is determined by the state of at most one other component that does
not evolve. In a sense, these kind of actions are of the form X+Y → X+Z where X
behaves like a catalyst molecule that “hits” another molecule Y and changes it into
Z, without being itself changed. Assuming catalysts are always available, this can
represent any biochemical system made of monomolecular reactions, and can also
represent catalytic networks such as metabolic networks. Our motivation behind this
framework was to design a model and analysis techniques adapted to biological mod-
elling. These analyses avoid to build the whole state space, which allows to tackle
very large systems (that would have led to a huge number of states, hopelessly too
huge to be analysed). They are based on the fact that most biological models have
few levels of expression per component: in Boolean networks [8,13] there are only
two levels per component and in its multivalued equivalent, Asynchronous Discrete
Networks [5], components rarely have more that four levels.

Besides, one further objective of our work is now to improve the accuracy of
the description of the studied systems dynamics. The idea for this is to introduce
timing features into models: we are interested in taking into account some knowledge
about the relative length of some phenomena as it is a way to refute some models
(or parameters) that are inconsistent with the observed dynamic behaviours. In this
paper, we are dealing with these timing properties through priorities, that are based
on the simple founding idea that prioritised actions have to be processed before the
other ones. Indeed, due to the Process Hitting framework restrictions, bimolecular
reactions are not immediately available, but one can simulate them with an encoding
called “cooperation”. That encoding however introduces extra reactions, and this is
where the priorities become useful, if not necessary. The extra reactions can be given
“infinite speed” (high priority) so that they do not affect the behaviour of “normal”
(low priority) reactions, including the bimolecular ones.

Until now, such a priority scheduling of the actions was not studied extensively
in the different formal modelling frameworks dedicated to systems biology. Never-
theless, such an attempt has been carried out for Petri nets by F. Bause [1], and
the concept of priority relations among the transitions of a network has also more
recently been introduced by A. K. Wagler et al. [15,14] in order to allow modelling
deterministic systems for biological applications. The concept of priority is much
straightforward in the approach of process algebras as it was shown by R. Cleaveland

M. Folschette et al. / Electronic Notes in Theoretical Computer Science 299 (2013) 33–5134

and M. Hennessy in [2,4] and their abstractions and equivalences were studied in
[3]. It was later extended for applications in the field of systems biology by M. John
et al. [7].

Contributions
Since our formalism (the Process Hitting) can be considered as a subset of Cal-

culus of Communicating Systems, our work is related to such semantic ramifications
of extending traditional process algebras with the concepts of priority that allow for
some transitions to be given precedence over others. The concept is derived in two
directions: dynamic versus static, the difference being naturally that the former one
refers to a semantics where priority values may change during execution according
to some evolution rules. In our work, actions exhibit a two-level static priority struc-
ture, some of them being designated as “prioritised” and others as “unprioritised”.

In this paper, we introduce a new extension to the semantics of Process Hitting
by partitioning actions into classes of priorities. One of the objectives is to reach
an accurate representation of cooperating components in the model, that was not
fulfilled with the initial semantics. We then develop an efficient under-approximation
of the reachability of the state of components on a subclass of this new framework,
thus allowing to compute efficient static analysis. This local reachability under-
approximation can be also easily extended to study the reachability of a global state.
Finally, as the subclass of models studied proves to be bisimilar to Asynchronous
Discrete Networks, we state to have developed an efficient method to compute the
reachability of a state and thus study the behaviour of such models.

The method developed in this paper has been implemented into the existing
Pint library and tested on a large-scale biological model containing 94 components.
The under-approximation turned out to be conclusive in all cases and results were
computed in hundredths of seconds, thus overtaking the efficiency of usual model-
checkers.

Our paper is organised as follows. The Process Hitting framework is defined in
section 2; we introduce static analysis of the Process Hitting in section 3; section
4 illustrates the approach on an example before the discussion and conclusion in
section 5.

Notations
If A is a finite set, |A| is the cardinality of A and ℘(A) is the power set of A. N is

the set of natural numbers, N∗ = N \ {0} is the set of positive natural numbers and
�x; y� = {x, x+ 1, . . . , y − 1, y} is the set of natural numbers from x to y included.
If x = (xi)i∈�1;n� is a sequence of elements indexed by i ∈ �1;n�, Ix = �1;n� is the
set of indexes of this sequence. We also denote by ε the empty sequence. If A and
B are sets, f : A → B denotes an application f that maps the elements of A to
elements of B. lfp{x0} (x �→ x′) is the least fixed point of the function x �→ x′ which
is greater than x0. The Cartesian product is denoted ×.

M. Folschette et al. / Electronic Notes in Theoretical Computer Science 299 (2013) 33–51 35

2 The Process Hitting Framework

We give in this section the definition and the semantics of the Process Hitting (PH)
with priorities, which is an extension of the basic semantics given in [10]. Then we
describe the modelling of cooperation between components and discuss how the new
aforementioned semantics makes this modelling more accurate. Finally, in order to
perform a static analysis adapted to this new semantics, we give several criteria to
restrict the class of models that we can study, and give several theorems that follow.
This class of models is equivalent to Asynchronous Discrete Networks.

2.1 Definition of the Process Hitting with k classes of priorities

A PH with k classes of priorities (Def. 2.1), also simply called “PH” in the following
when it is not ambiguous, gathers a finite number of concurrent processes divided
into a finite set of sorts. A process belongs to a unique sort and is noted ai where a

is the sort and i the identifier of the process within the sort a. Each process stands
for a kind of “activity level” of its sort; a state of the PH thus corresponds to a set
of processes containing exactly one process of each sort.

The concurrent interactions between processes are defined by a set of actions
divided into classes of priorities. Actions describe the replacement of a process by
another of the same sort conditioned by the presence of at most one other process
and by the fact that no other action of higher priority can be played in the considered
state of the PH. An action is denoted by ai → bj � bk where ai, bj , bk are processes
of sorts a and b. It is required that bj �= bk and that a = b ⇒ ai = bj . An action
h = ai → bj � bk is read as “ai hits bj to make it bounce to bk”, and ai, bj , bk are
called respectively hitter, target and bounce of the action, and can be referred to as
hitter(h), target(h), bounce(h), respectively.

Definition 2.1 [Process Hitting with k classes of priorities] If k ∈ N∗, a Process
Hitting with k classes of priorities is a triplet PH = (Σ;L;H〈k〉), where H〈k〉 =

(H(1); . . . ;H(k)) is a k-tuple and:

• Σ
Δ
= {a, b, . . . } is the finite set of sorts,

• L Δ
= ×

a∈Σ
La is the finite set of states, where La = {a0, . . . , ala} is the finite set

of processes of sort a ∈ Σ and la ∈ N∗. Each process belongs to a unique sort:
∀(ai; bj) ∈ La × Lb, a �= b ⇒ ai �= bj ,

• ∀n ∈ �1; k�,H(n) Δ
= {ai → bj � bl | (a; b) ∈ Σ2 ∧ (ai; bj ; bl) ∈ La × Lb × Lb ∧ bj �=

bl ∧ a = b ⇒ ai = bj} is the finite set of actions of priority n.

We call Proc
Δ
=

⋃
a∈Σ La the set of all processes, and H Δ

=
⋃

n∈�1;k� H(n) the set of
all actions.

The sort of a process ai is referred to as Σ(ai) = a. Given a state s ∈ L, the process
of sort a ∈ Σ present in s is denoted by s[a], that is the a-coordinate of the state s.
If ai ∈ La, we define the notation ai ∈ s

Δ⇔ s[a] = ai. The override of a state s by a

M. Folschette et al. / Electronic Notes in Theoretical Computer Science 299 (2013) 33–5136

process ai is defined in Def. 2.2 as the same state in which the process of sort a has
been replace by ai, which then allows to define the dynamics of a PH in Def. 2.3.

Definition 2.2 [� : L ×Proc → L] Given a state s ∈ L and a process ai ∈ Proc,
(s � ai) is the state defined by: (s � ai)[a] = ai ∧ ∀b �= a, (s � ai)[b] = s[b]. We
also extend this definition to a set of processes ps given that all processes are from
different sorts by the override of each process: ∀as ⊆ Σ, ∀ps ∈ ×

a∈as
La, s � ps =

s �
ai∈ps

ai.

Definition 2.3 [Dynamics of a PH (→PH)] An action h = ai → bj � bk ∈ H(n) of
priority n is playable in s ∈ L if and only if s[a] = ai, s[b] = bj and ∀m < n, ∀g ∈
H(m), hitter(g) /∈ s∨target(g) /∈ s. In such a case, (s ·h) stands for the state resulting
from the play of the action h in s and is defined by: (s·h) = s�bounce(h). Moreover,
we denote: s →PH (s · h).

If s ∈ L, a scenario δ from s is a sequence of actions of H that can be played
successively in s. The set of all scenarios from s is noted Sce(s).

In Def. 2.4, we define the n-reduction of a given PH as the PH with n classes of
priorities in which only actions of priority lower or equal to n are considered.

Definition 2.4 [PH n-reduction] If PH = (Σ;L;H〈k〉) is a Process Hitting with
k classes of priorities and n ∈ �1; k�, we denote PH n the n-reduction of PH.
PH n = (Σ;L;H′〈n〉) is a PH with n classes of priorities with:

H′〈n〉 = (H(1); . . . ;H(n))

Furthermore, we denote: Sce n(s) the set of scenarios from s in PH n.

Example 2.5 Fig. 1 gives an example of PH with 2 classes of priorities where:

Σ = {a, b, c, ab} ,

La = {a0, a1} , Lb = {b0, b1} ,

Lc = {c0, c1} , Lab = {ab00, ab01, ab10, ab11} .

There also is especially: {ab11 → c0 � c1, a1 → a1 � a0, a0 → b0 � b1} ⊆ H(2).

2.2 Modelling cooperation

Cooperation between processes to make another process bounce can be expressed in
PH by building a cooperative sort, as described in [10]. Fig. 1 shows an example of
cooperation between processes a1 and b1 to make c0 bounce to c1: a cooperative sort
ab is defined with 4 processes (one for each sub-state of the presence of processes
a1 and b1). For the sake of clarity, the processes of ab are indexed using the sub-
state they represent. Hence, ab10 represents the sub-state 〈a1, b0〉, and so on. Each
process of sort a and b hit ab to make it bounce to the process reflecting the status of
the sorts a and b (e.g., a1 → ab00 � ab10 and a1 → ab01 � ab11). Then, to represent

M. Folschette et al. / Electronic Notes in Theoretical Computer Science 299 (2013) 33–51 37

a

0

1

b

0

1

c

0

1

ab

00

01

10

11

Figure 1. An example of PH with 2 classes of priorities. Sorts are represented as labelled boxes and
processes as circles with their identifier on the side. Actions of H(1) are represented by thick arrows and
actions of H(2) are represented by single arrows; the hit part of each action in drawn in plain line and the
bounce part is in dotted line. Greyed processes stand for a possible state s = 〈a1, b0, c0, ab10〉.

the cooperation between a1 and b1, the process ab11 hits c0 to make it bounce to c1
instead of independent hits from a1 and b1.

We note that cooperative sorts are standard PH sorts and do not involve any
special treatment regarding the semantics of related actions. Furthermore, it is
possible to “factorise” cooperative sorts in order to decrease the number of processes
created within each cooperative sort. For example, if three processes x1, y1 and z1
cooperate, it is preferable to create a cooperative sort xy with 4 processes to state
the presence of x1 and y1 and a second cooperative sort xyz with 4 processes to state
the presence of xy11 and z1, rather than a unique cooperative sort with 8 processes
stating the presence of x1, y1 and z1. This “factorisation” allows to prevent the
combinatorial explosion of the number of processes in cooperative sorts, especially
for cooperations between more than three processes. It may have computational
consequences as the static analysis method developed in Sect. 3 does not suffer from
the number of sorts but from the number of processes in each sort.

The construction of cooperation in PH allows to encode any Boolean function
between cooperating processes [10]. Due to the introduction of priorities into the PH
framework, it is possible to build cooperations with no temporal shift by defining
actions updating the cooperative sorts with the highest class of priority. This allows
to gain the same expressivity in PH than in Boolean networks, as stated in Sub-
sect. 2.2. The aim of this paper is to allow the static analysis of the dynamics to be

M. Folschette et al. / Electronic Notes in Theoretical Computer Science 299 (2013) 33–5138

handled on PH models comprising such higher priority actions updating cooperative
sorts.

2.3 Restrictions

In the scope of this paper, we focus on a specific class of PH models. We define here
the restrictions that lead to this class of models and show that they are equivalent
to discrete networks.

Criterion 2.6 allows to distinguish two kinds of actions: unprioritised actions
modelling the non-determinacy of biological evolutions and prioritised actions used
to model non-biological behaviours in the model, namely the update of cooperative
sorts. Criterion 2.7 states that the dynamics of the studied model PH contains
no infinite sequence of prioritised actions. As these actions can be considered as
non-biological and therefore instantaneous, we thus prevent the existence of any
Zeno-like behaviour which would allow the play of an infinite sequence of prioritised
actions in “zero time”.

Criterion 2.6 (2 classes of priorities) In this paper, we only consider Process
Hitting with 2 classes of priorities: PH = (Σ;L;H〈2〉).

Criterion 2.7 (Bounded termination) The dynamics of PH 1 contains no cy-
cles: ∃N ∈ N, ∀s ∈ L, ∀δ ∈ Sce 1(s), |δ| ≤ N .

In Def. 2.8 we define a well-formed component as a sort that is hit only by
unprioritised actions, or that no action hits.

Definition 2.8 [Well-formed component (Γ)] A sort a ∈ Σ is a well-formed compo-
nent if and only if:

∀h ∈ H,Σ(target(h)) = a ⇒ prio(h) = 2 .

We call Γ the set of well-formed components.

Def. 2.9 defines chains of prioritised actions, and Criterion 2.10 prevents the
presence of cycles in these chains.

Definition 2.9 The set of chains of actions H(a, b) between two sorts a, b ∈ Σ is
defined as below:

H(a, b) = {(hi)i∈�1;s+1� ∈ (H(1))s+1 | s ∈ N

∧ Σ(hitter(h1)) = a ∧ Σ(target(hs+1)) = b

∧ ∀i ∈ �1; s�,Σ(target(hi)) = Σ(hitter(hi+1))}

where (H(1))s+1 is the Cartesian product of s+ 1 times the set H(1).

Criterion 2.10 (Cycle-freeness in prioritised actions) There is no cycles in
chains of actions: ∀a ∈ Σ,H(a, a) = ∅.

M. Folschette et al. / Electronic Notes in Theoretical Computer Science 299 (2013) 33–51 39

In Def. 2.11 we define the notion of neighbouring sorts and actions of a given sort.
The set of neighbouring sorts VΣ(a) of a sort a is the set of components that can
interact with it through prioritised actions. The set of neighbouring actions VH(a)
of a is the set of prioritised actions influencing a. These definitions are permitted
by the previous restrictions (Criterion 2.6 and 2.10).

Definition 2.11 [VΣ : Σ → ℘(Σ); VH : Σ → ℘(H)] For all sort a ∈ Σ,

VΣ(a) = {b ∈ Γ | H(b, a) �= ∅}
VH(a) = {h ∈ H(1) | ∃b ∈ VΣ(a), ∃hs ∈ H(b, a), h ∈ hs}

Finally, we introduce the notion of local steady-state of a sort from a given state.
This local steady-state is the set of processes towards which the sort tends to evolve
to, and stay in, when playing only prioritised actions. We denote lsts(a) this set of
processes for a sort a in state s (Def. 2.12), and we derive from this the notion of
well-formed cooperative sort (Def. 2.13). A well-formed cooperative sort models a
cooperation between sorts as presented in Subsect. 2.2; therefore, it must be only
hit by prioritised actions, in a way that its local steady-states efficiently represent
all configurations of its neighbouring sorts.

Definition 2.12 [lst : Σ → ℘(Proc)] For all a ∈ Σ,

lsts(a) = {ai ∈ La | ∃δ ∈ Sce 1(s), (s · δ)[a] = ai

∧ ∀bi → cj � ck ∈ VH(a), (s · δ)[b] �= bi ∨ (s · δ)[c] �= cj}

Of course, if a ∈ Γ, then lsts(a) = {s[a]}.
Definition 2.13 [Well-formed cooperative sorts (Δ)] A sort a ∈ Σ is a well-formed
cooperative sort if and only if:

(i) ∃b ∈ Σ,H(b, a) �= ∅
(ii) ∀s ∈ L, ∃ai ∈ La, lsts(a) = {ai}
(iii) ∀ai ∈ La, ∃s ∈ L, lsts(a) = {ai}
We call Δ the set of well-formed cooperative sorts.

Because of Def. 2.13(ii), we denote in the following: lsts(a) = ai. Furthermore,
because of Def. 2.13(iii), we denote procState(ai) the set of sub-states represented
by the process ai of any cooperative sort a (Def. 2.14).

Definition 2.14 [procState : Proc → ℘(Proc)] If a ∈ Δ and ai ∈ La, we define:

procState(ai) = {ps ∈ ×
b∈VΣ(a)

Lb | ∀s ∈ L, lsts�ps(a) = ai}

In the following we simply write “component” (resp. “cooperative sort”) instead
of “well-formed component” (resp. “well-formed cooperative sort”). Finally, Crite-
rion 2.15 states that the set of sorts of the considered PH must be divided between
components and cooperative sorts.

M. Folschette et al. / Electronic Notes in Theoretical Computer Science 299 (2013) 33–5140

Criterion 2.15 (Components & cooperative sorts partition)

Σ = Γ ∪Δ ∧ Γ ∩Δ = ∅
Example 2.16 The PH in Fig. 1 contains three components a, b and c and a
cooperative sort ab that models cooperation between sorts a and b.

The criteria given in this subsection allow to define a class of PH models that is
(weakly) bisimilar to Asynchronous Boolean Networks or, more generally, to the mul-
tivalued version of this framework, called Asynchronous Discrete Networks (ADN).
A translation of ADN into PH is given in Appendix B, alongside with a demonstra-
tion of the weak bisimulation.

2.4 Consequences of the restrictions

In this subsection, we give several general theorems that can be derived from the
restrictions of Subsect. 2.2, and which will help building the static analysis of Sect. 3.

We first denote by update(s) the state equivalent to s but in which all cooperative
sorts are updated (Def. 2.17). This state is unique due to the properties of lst given
in the previous subsection. Then, Theorem 2.18 states that from any state, there
exists a scenario updating the cooperative sorts of this state.

Definition 2.17 [update : L → L] For all s ∈ L, we define:

update(s) = s � {lsts(a) | a ∈ Δ} .

Theorem 2.18 ∀s ∈ L, ∃δ ∈ Sce 1(s), s · δ = update(s)

Proof Let a be a cooperative sort so that s[a] �= lsts(a). Given the definition
of lsts(a), there exists a scenario δ updating a in s so that ∀δ′ ∈ Sce 1(s · δ),
(s · δ · δ′)[a] = lsts(a). As there is no cycle of actions between the cooperative sorts
(Criterion 2.10) and given that an updated cooperative sort cannot evolve, at most
|Δ| updates have to be performed. �

Theorem 2.19 states that for a given state s, and for any action h = ai → bj � bk
where a and b are components, if s[a] = ai and s[b] = bj , then h can always be played
after a series of hits (and these hits do not prevent it to be fired). Theorem 2.20
states the same if a is a cooperative sort, under the condition that a is updated in
s.

Theorem 2.19 ∀s ∈ L, ∀a, b ∈ Γ, ∀h = ai → bj � bk ∈ H,

(s[a] = ai ∧ s[b] = bj) ⇒ (∃δ ∈ Sce 1(s), (s · δ) →PH (s · δ · h))
Proof From Theorem 2.18, there exists a scenario δ with: (s · δ) = update(s). As
a, b ∈ Γ, ai ∈ (s · δ) and bj ∈ (s · δ). Finally, by definition of update(s), no prioritised
action can be played in (s · δ), thus h can be played in (s · δ). �

Theorem 2.20 ∀s ∈ L, ∀h = ai → bj � bk ∈ H, a ∈ Δ, b ∈ Γ

(s[a] = ai ∧ s[b] = bj ∧ lsts(a) = ai) ⇒ (∃δ ∈ Sce 1(s), (s · δ) →PH (s · δ · h))
Proof Similar to the proof of Theorem 2.19; as ai ∈ lsts(a), ai ∈ (s · δ). �

M. Folschette et al. / Electronic Notes in Theoretical Computer Science 299 (2013) 33–51 41

3 Static Analysis

The aim of this section is to define the problem of reachability in a PH, and propose
an under-approximation allowing to efficiently solve it. The static analysis presented
here is inspired from [11].

3.1 Preliminary definitions

The reachability of a process aj of a given sort a from another process ai is called
an objective and is denoted ai �∗aj (Def. 3.1).

Definition 3.1 [Objective (Obj)] If a ∈ Γ, the reachability of a process aj from
a process ai is called an objective, noted ai �∗aj . The set of all objectives is called
Obj

Δ
= {ai �∗aj | a ∈ Γ ∧ (ai, aj) ∈ L2

a}. For an objective P = ai �∗aj ∈ Obj, we
define: Σ(P) = a, target(P) = ai, bounce(P) = aj , and P is said trivial if ai = aj .

We define an objective sequence as a sequence of objectives in which each objec-
tive target must be equal to the previous objective bounce of the same sort, if it
exists. The set of all objective sequences is denoted by OS.

A context (Def. 3.2) extends the notion of state to a set of possible initial states.
We also extend the override operator to contexts (Def. 3.3).

Definition 3.2 [Context (Ctx)] A context ς associates to each sort in Σ a non-
empty subset of its processes: ∀a ∈ Σ, ς[a] ⊆ La ∧ ς[a] �= ∅. Ctx is the set of all
contexts.

Definition 3.3 [� : Ctx× ℘(Proc) → Ctx] For any ς ∈ Ctx and set of processes
ps ∈ ℘(Proc), the override of ς by ps is noted ς � ps and is defined by:

∀a ∈ Σ, (ς � ps)[a] =

{
{p ∈ ps | Σ(p) = a} if ∃p ∈ ps,Σ(p) = a,

ς[a] else.

For a given context ς, we note ai ∈ ς if and only if ai ∈ ς[a], and for all ps ∈ ℘(Proc)

or ps ∈ L, ps ⊆ ς
Δ⇔ ∀ai ∈ ps, ai ∈ ς. A sequence of actions δ is playable in a context

ς if and only if ∃s ⊆ ς, δ ∈ Sce(s). We denote then: δ ∈ Sce(ς), and the play of δ
in ς is ς · δ = ς � end(δ), where end(δ) is the set containing the last process in the
sequence δ (hitter or bounce) of every sort mentioned in δ.

Finally, a bounce sequence on a sort a (Def. 3.4) is a sequence of actions hitting
a in which the bounce process of each action is the hitter process of the following
action. Bounce sequences are used to find local solutions to a given objective. A
bounce sequence on a can be abstracted into sets of all its hitters that are not in
sort a (Def. 3.5). This abstraction allows to propagate an objective on the sort a

into objectives on other sots. In the following, we denote: Sol = ℘(Proc).

Definition 3.4 [Bounce sequence (BS)] A bounce sequence ζ is a sequence of ac-
tions so that ∀n ∈ Iζ , n < |ζ|, bounce(ζn) = target(ζn+1). BS denotes the set of

M. Folschette et al. / Electronic Notes in Theoretical Computer Science 299 (2013) 33–5142

all bounce sequences, and BS(P) denotes the set of bounce sequences solving an
objective P :

BS(ai �∗aj) = {ζ ∈ BS | target(ζ1) = ai ∧ bounce(ζ|ζ|) = aj} .

BS(ai �∗aj) = ∅ if there is no way to reach aj from ai and ε ∈ BS(ai �∗ai).

Definition 3.5 [BS∧ : Obj → ℘(Sol)] The abstractions of bounce sequences of an
objective P , denoted by the set BS∧(P), are the sets of hitters of bounce sequences
solving P :

BS∧(P) = {ζ∧ ∈ Sol | ζ ∈ BS(P), �ζ ′ ∈ BS(P), ζ ′∧ � ζ∧} ,

where ζ∧ = {hitter(ζn) | n ∈ Iζ ∧ Σ(hitter(ζn)) �= Σ(P)}.

3.2 Under-approximation

We denote γς(ω) the set of scenarios concretising an objective sequence ω in the
context ς. In Def. 3.6, we define 	ς(ω) as equal to γς(ω) if and only if γς(ω) contains
scenarios starting from all states s ⊆ ς. Theorem 3.7 is used to over-approximate
the initial context ς.

Definition 3.6 [ς : OS → ℘(Sce)]

	ς(ω) =

{
γς(ω) if ∀s ∈ L, s ⊆ ς, ∃δ ∈ γς(ω), δ ∈ Sce(s)

∅ else.

Theorem 3.7 ς ⊆ ς ′ ∧ 	ς′(ω) �= ∅ =⇒ 	ς(ω) �= ∅.
For any objective P and context ς, Def. 3.8 gives the set of processes of sort

Σ(P) that are required to solve P in ς, given by maxContς(Σ(P), P).

Definition 3.8 [maxContς : Σ×Obj → ℘(Proc)]

maxContς(a, P) = {p ∈ Proc | ∃ps ∈ BS∧(P), ∃bi ∈ ps, b = a ∧ p = bi

∨ b �= a ∧ p ∈ maxContς(a, bj �∗ bi) ∧ bj ∈ ς[b]} .

The graph of local causality �Bω
ς � = (V,E) defined in Def. 3.9 is a graph where

V ⊆ Proc∪Obj∪Sol and E ⊆ V ×V . A node in Proc is a required process, a node
in Obj is an objective to reach a given process and a node in Sol is a set of processes
required for the solving. An objective P ∈ Obj is solvable if the abstractions of
bounce sequences BS∧(P) ∈ Sol (Def. 3.5) can be reached (Eq. (4)), thus leading
to several required processes (Eq. (5)). If a ∈ Γ, the reachability of one of its process
ai is approximated by the ability to solve all objectives aj �∗ai ∈ Obj for all aj in
the initial context (Eq. (6)); if a ∈ Δ, the reachability of ai is simply solved by the
set of processes procState(ai) (Def. 2.14) that it represents (Eq. (7)). The solving of
an objective P may require a process of Σ(P), i.e. maxCont(Σ(P), P) �= ∅ (Def. 3.8);
in this case, P is re-targeted (Eq. (8)). Eq. (1), (2) and (3) ensure that all required

M. Folschette et al. / Electronic Notes in Theoretical Computer Science 299 (2013) 33–51 43

nodes are in V ω
ς . Finally, as the active process of every sort may evolve, �Bω

ς � is
obtained by iteratively saturating with every process it contains, i.e. by overriding
its initial context ς by procs(V,E), defined by:

procs(V,E) = (V ∩Proc) ∪ {target(P), bounce(P) | P ∈ V ∩Obj}
Definition 3.9 The graph of local causality �Bω

ς � = (�V ω
ς �, �Eω

ς �) is defined as:
�Bω

ς � = lfp{Bω
ς }

(
Bω
ς �→ Bω

ς�procs(Bω
ς)

)
, where Bω

ς = (V ω
ς , Eω

ς) is the smallest graph
with V ω

ς ⊆ Proc ∪Obj ∪ Sol and Eω
ς ⊆ V ω

ς × V ω
ς so that:

ω ⊆ V ω
ς (1)

P ∈ V ∩Proc ⇒ bounce(P) ∈ V ω
ς (2)

(x, y) ∈ E ⇒ y ∈ V ω
ς (3)

P ∈ V ∩Obj ∧ ps ∈ BS(P) ⇒ (P, ps) ∈ Eω
ς (4)

ps ∈ V ∩ Sol ∧ ai ∈ ps ⇒ (ps, ai) ∈ Eω
ς (5)

a ∈ Γ ∧ ai ∈ V ∩Proc ∧ aj ∈ ς ⇒ (ai, aj �∗ai) ∈ Eω
ς (6)

a ∈ Δ ∧ ai ∈ V ∩Proc ∧ ps ∈ procState(ai) ⇒ (ai, ps) ∈ Eω
ς (7)

P ∈ V ∩Obj ∧ q ∈ maxContς(Σ(P), P) ⇒ (P, q �∗ bounce(P)) ∈ Eω
ς (8)

In the graph of local causality, an edge (p, ps) ∈ Proc × Sol is said coherent
(Def. 3.10) if none of the processes in ps conflict with the children processes of ps.
Then, Theorem 3.11 gives a sufficient condition for the concretization of a sequence
of objectives in a given context, which is derived immediately from the graph of
local causality. A proof of this theorem is given in Annex A.

Definition 3.10 [Coherent edge] An edge (x, y) ∈ Eω
ς is said coherent if and only

if: (x, y) ∈ �Eω
ς � ∩ (Proc× Sol) ⇒ y has no children process aj ∈ �V ω

ς � ∩Proc so
that ∃ai ∈ y, ai �= aj .

Theorem 3.11 (Under-Approximation) If the graph �Bω
ς � contains no cycle, all

objectives have at least one solution and all edges are coherent, then 	ς(ω) �= ∅.

Computing the graph of local causality is polynomial in the number of sorts in
PH and exponential in the number of processes in one sort. Checking the properties
allowing to apply Theorem 3.11 is polynomial in the size of the graph. Furthermore,
it is possible to compute only a subset of V ∩ Sol; in this case, the overall method
turns out to be exponential in the number of solutions to each objective. Our method
can thus be considered as efficient compared to regular model-checking which is
usually PSPACE-complete [6].

Example 3.12 Let PH′ = (Σ,L,H′〈1〉) be the “flattened” version of the PH in
Fig. 1, that is: H′〈1〉 = H(1) ∪ H(2), which is equivalent to a PH in the semantics
without priorities. Due to spurious behaviours inherent to the cooperative sorts in
this semantics, the original under-approximation developed in [11] concludes that c1
is reachable in PH′ from ς = 〈a1, b0, c0, ab10〉.

M. Folschette et al. / Electronic Notes in Theoretical Computer Science 299 (2013) 33–5144

Such unwanted behaviours are palliated by the semantics of PH with priorities
proposed in this paper. Indeed, the under-approximation given in Theorem 3.11 does
not conclude regarding the reachability of c1, as one of the edges of the resulting
graph of local causality is not coherent (Def. 3.10), as shown in in Fig. 2. (However,
from the inconclusiveness of Theorem 3.11, one cannot conclude about the unreach-
ability of c1. Such analysis should be driven for instance with over-approximation
methods developed in [11].)

However, if a0 → b0 � b1 and b0 → a0 � a1 are replaced by a0 → a0 � a1 and
b0 → b0 � b1, then Theorem 3.11 concludes that c1 is reachable from ς.

c1

c0 �∗ c1

ab11

a1

a1 �∗a1
a0 �∗a1

b0

b0 �∗ b0
b1 �∗ b0

b1

b1 �∗ b1
b0 �∗ b1

a0

a0 �∗a0
a1 �∗a0

Figure 2. The graph of local causality of the PH model in Fig. 1. Rectangular nodes containing a single
process are elements in Proc, nodes containing a couple of processes are elements in Obj and circle nodes
are elements in Sol. Theorem 3.11 is inconclusive on this example as edge (ab11, {a1, b1}) ∈ Proc × Sol
(here represented with a double line) is not coherent (Def. 3.10). Indeed, a0 ∈ Proc is a child of {a1, b1},
but a0 �= a1 (and the same also stands for b0).

3.3 Reachability of a state

The semantics of PH with 2 classes of priorities studied in this paper allows to
model cooperative sorts accurately representing a coherent configuration of a set of
sorts. Therefore, we can derive a new method to conclude about the reachability
of a state (considering only components). Indeed, let PH = (Σ,L, (H(1),H(2))) be

M. Folschette et al. / Electronic Notes in Theoretical Computer Science 299 (2013) 33–51 45

a PH and suppose that we want to study the reachability of a state s ∈ L. Let
PH′ = (Σ′,L′, (H′(1),H′(2))) with: Σ′ = Σ ∪ {τ, σ} and L′ = L × Lτ × Lσ, where
τ is a cooperative sort on all components Γ of PH (thus Lτ = ×

a∈Γ
La) and σ is a

component with Lσ = {σ0, σ1}; furthermore, H′(1) is the set H(1) completed with
all actions updating the cooperative sort τ , and H′(2) = H(2) ∪ {lsts(τ) → σ0 � σ1}.

Given an initial context ς, the reachability of s in PH is equivalent to the con-
cretization of σ0 �∗σ1 in PH′ from the initial context ς ∪ {σ0} (the initial state of τ
does not matter), which can be efficiently under-approximated using Theorem 3.11.
Indeed, the additional action lsts(τ) → σ0 � σ1 in H′(2) allows to conclude on the
reachability of process lsts(τ), that is, on the reachability of the state s (considering
only the components).

It is also possible to compute the reachability of a set of states S ⊆ L by creating
several actions τs → σ0 � σ1 in H(2) for each state s ∈ S.

4 Large-scale Biological Example

In order to support the scalability and applicability of our under-approximation of
reachability, we apply our new approach for the analysis of large-scale model of
the T-cell receptor (TCR) signalling pathway [12]. This model gathers 94 interact-
ing components and is specified as a Boolean network. The under-approximation
presented in this paper has been implemented in the existing Pint software 2 .

The Boolean model has been automatically encoded into a Process Hitting with
2 classes of priority 3 . Then, we verified the reachability for the independent ac-
tivation of 4 outputs of the signalling cascade (SRE, AP1, NFkB, NFAT) from
all possible input combinations (CD45, CD28, TCRlib) using our new reachability
under-approximation (answering either yes or inconclusive) and a previously defined
reachability over-approximation [11] (answering either no or inconclusive). All re-
sult in conclusive decisions, and the under-approximation has been satisfied in 12
cases (over 32) proving the satisfiability of the concerned reachability property in
the encoded Boolean network (and non-satisfiability in the other cases).

Computations times are in the order of a few hundredths of a second on a 2.4GHz
processor with 2GB of RAM. To give a comparison, we did the same experiments
with a standard symbolic model-checker, libDDD [9], known for its good perfor-
mances, the input model being the Boolean network expressed as a Petri net. How-
ever, due to the large scale of the model, the program runs out of memory for all
the experiments.

While ensuring a low complexity for the analysis of reachability in Boolean and
discrete networks, our under-approximation method reveals to be conclusive in nu-
merous cases when applied to real large-scale biological models, which were not
tractable with exact model-checking.

2 Pint is freely available at http://process.hitting.free.fr.
3 Model and scripts are available at http://www.irccyn.ec-nantes.fr/~folschet/
underapprox-tcrsig94.zip.

M. Folschette et al. / Electronic Notes in Theoretical Computer Science 299 (2013) 33–5146

http://process.hitting.free.fr
http://www.irccyn.ec-nantes.fr/~folschet/underapprox-tcrsig94.zip
http://www.irccyn.ec-nantes.fr/~folschet/underapprox-tcrsig94.zip

5 Discussion & Conclusion

We introduced a new semantics to include priorities into the Process Hitting frame-
work, which prove especially useful to model cooperations. Then, we developed a
method to efficiently perform a reachability analysis of a sequence of objectives in
a restricted class of Process Hitting models, but it is also useful to establish the
reachability of a partial state. This analysis is based on an under-approximation of
the true reachability solutions.

We showed that the class of Process Hitting models that can be handled by
the aforementioned method are equivalent to Asynchronous Discrete Networks, and
therefore to Asynchronous Boolean Networks. This allows to efficiently compute
reachability results on large biological models provided that they are equivalent to
Asynchronous Discrete Networks and that a translation from the original framework
into a Process Hitting model is possible. Such a translation for interaction graphs
of Thomas modelling was proposed in [10].

Further work can be derived from what have been presented in this paper. The
over-approximation on Process Hitting models without priorities proposed in [11]
is still accurate in the framework with priorities (by “flattening” all actions), but
may be refined given the restrictions proposed in this paper, and a specific search
of key processes or cut sets may be derived. Furthermore, a more general under-
approximation could be developed in order to handle a larger class of Process Hitting
models, that is, models with more than two classes of priorities, that do not only
contain components of cooperative sorts, or whose behaviour may contain cycles or
cyclic attractors. Finally, in order to take into account quantitative data in transition
delays, the overall approximation method could be extended to handle evolutions
that are chronometric instead of only chronologic.

References

[1] Bause, F., Analysis of Petri nets with a dynamic priority method, in: P. Azéma and G. Balbo, editors,
Application and Theory of Petri Nets 1997, Lecture Notes in Computer Science 1248, Springer Berlin
Heidelberg, 1997 pp. 215–234.

[2] Cleaveland, R. and M. Hennessy, Priorities in process algebras, Information and Computation 87
(1990), pp. 58–77, special Issue: Selections from 1988 IEEE Symposium on Logic in Computer Science.

[3] Cleaveland, R., G. Lüttgen and V. Natarajan, Priority and abstraction in process algebra, Information
and Computation 205 (2007), pp. 1426–1458.

[4] Cleaveland, R., G. Lüttgen and V. Natarajan, Priorities in process algebra (1999).

[5] De Jong, H., Modeling and simulation of genetic regulatory systems: a literature review, Journal of
computational biology 9 (2002), pp. 67–103.

[6] Harel, D., O. Kupferman and M. Y. Vardi, On the complexity of verifying concurrent transition systems,
Information and Computation 173 (2002), pp. 143–161.

[7] John, M., C. Lhoussaine, J. Niehren and A. Uhrmacher, The attributed pi-calculus with priorities,
in: C. Priami, R. Breitling, D. Gilbert, M. Heiner and A. Uhrmacher, editors, Transactions on
Computational Systems Biology XII, Lecture Notes in Computer Science 5945, Springer Berlin
Heidelberg, 2010 pp. 13–76.

[8] Kauffman, S. A., Metabolic stability and epigenesis in randomly constructed genetic nets, Journal of
theoretical biology 22 (1969), pp. 437–467.

M. Folschette et al. / Electronic Notes in Theoretical Computer Science 299 (2013) 33–51 47

[9] LIP6/Move, the libDDD environment (libDDD), http://ddd.lip6.fr.

[10] Paulevé, L., M. Magnin and O. Roux, Refining dynamics of gene regulatory networks in a stochastic
π-calculus framework, in: Transactions on Computational Systems Biology XIII, Springer, 2011 pp.
171–191.

[11] Paulevé, L., M. Magnin and O. Roux, Static analysis of biological regulatory networks dynamics using
abstract interpretation, Mathematical Structures in Computer Science 22 (2012), pp. 651–685.

[12] Saez-Rodriguez, J., L. Simeoni, J. A. Lindquist, R. Hemenway, U. Bommhardt, B. Arndt, U.-U. Haus,
R. Weismantel, E. D. Gilles, S. Klamt and B. Schraven, A logical model provides insights into t cell
receptor signaling, PLoS Comput Biol 3 (2007), p. e163.

[13] Thomas, R., Boolean formalization of genetic control circuits, Journal of Theoretical Biology 42 (1973),
pp. 563 – 585.

[14] Wagler, A. and J.-T. Wegener, On minimality and equivalence of Petri nets, in: L. Popova-Zeugmann,
editor, CS&P, CEUR Workshop Proceedings 928 (2012), pp. 382–393.

[15] Wagler, A. and R. Weismantel, The combinatorics of modeling and analyzing biological systems, Natural
Computing 10 (2011), pp. 655–681.

A Proof of Under-approximation (Theorem 3.11)

In the following, we denote: �Eω
ς �XY = �Eω

ς � ∩ (X × Y), with X,Y amongst Proc,
Obj and Sol.

Proof We note maxς = ς � procs(�Bω
ς �) the context supported by �Bω

ς �.
Let (ai, ps) ∈ �Eω

ς �Proc
Sol be an edge linking the required process of a cooperative

sort to a solution set and suppose all children of ps are concretisable. We label all
processes of ps by an integer: ps = {pn}n∈Ips . Let us prove by induction that for all
n ∈ Ips, there exists a scenario δn so that: ∀i ∈ �1;n�, (s · δn)[Σ(pi)] = pi.

• It is straightforward for δ0 = ε.
• Suppose such δn exists and let q = (s · δn)[Σ(pn+1)]. By hypothesis, (ai, ps) is

coherent (Def. 3.10) and all processes of ps are processes of components; this
means that none of the processes needed to solve pn+1 is another process of the
same sort than another process of ps. Therefore, there exists δ′ ∈ 	s·δn(q �∗ pn+1),
so that ∀i ∈ �1;n + 1�, (s · δn · δ′)[Σ(pi)] = pi. Finally, by Theorem 2.18, there
exists a scenario δ′′ ∈ Sce 1(s · δn · δ′) so that, if we denote δn+1 = δn · δ′ · δ′′,
we have: update(s · δn · δ′) = s · δn+1 and the same property about processes (by
Theorem 2.20).

Therefore, δ = δ|ps| exists, and given its properties, we have: (s · δ)[a] = ai and
update(s · δ) = s · δ.

As there is no cycle in �Bω
ς �, we show by induction that ∀s ∈ L, s ⊆ maxς, for

all objective P in �V ω
ς � ∩Obj so that target(P) ∈ s, ∃δ ∈ 	s(P).

• If (P, ∅) ∈ �Eω
ς �Obj

Sol , either target(P) = bounce(P) and δ = ε; or ∀ζ ∈ BS(P), ζ ∈
Sce(s) ∧Σ(ζ) = {Σ(P)} and δ = δ1 · ζ1 · . . . · δ|ζ| · ζ|ζ| is a valid sequence given by
Theorem 2.19.

• Suppose all children objectives of P are concretizable. If ∃(P,Q) ∈ �Eω
ς �Obj

Obj,
then by hypothesis, 	s(target(P)�∗target(Q) :: Q) �= ∅, thus 	s(P) �= ∅. Else,
by Def. 3.8, the concretizations of the children of P require no process of sort

M. Folschette et al. / Electronic Notes in Theoretical Computer Science 299 (2013) 33–5148

http://ddd.lip6.fr

Σ(P). Furthermore, there exists ζ ∈ BS(P) so that (P, ζ∧) ∈ �Eω
ς �Obj

Sol . We show
by induction that for all n ∈ Iζ , there is a scenario δn so that (s · δn)[Σ(P)] =

bounce(ζn).
◦ Suppose that δn exists and let ζn = bi → aj � ak. By hypothesis there exists
δ′ ∈ 	s·δn(� �∗ bi) with Σ(P) /∈ Σ(δ′) (by Def. 3.8). By Theorem 2.18 there exists
δ′′ ∈ Sce 1(s·δ′) so that update(s·δ′) = s·δ′ ·δ′′. Furthermore, (s · δ′ · δ′′)[b] = bj
(by Theorem 2.19 if b ∈ Γ or Theorem 2.20 if b ∈ Δ). Therefore, δn+1 =

δn · δ′ · δ′′ · ζn.
Thus, δ|ζ| ∈ 	s(P).

Finally, as 	maxς(ω) �= ∅, 	ς(ω) �= ∅ (Theorem 3.7). �

B Weak Bisimulation of Asynchronous Discrete Networks
(Subsect. 2.2)

We exhibit an encoding of Asynchronous Discrete Networks (ADN) with the Process
Hitting using two classes of priorities, and prove a weak bisimulation relation.

A Discrete Network gathers a finite number of components i ∈ �1;n� having a
discrete finite domain Fi that we note Fi = �1; li�. For each component i ∈ �1;n�,
a map F → Fi is defined, where F = F1 × · · · × Fn, giving the next value of the
component with respect to the global state of the network. Typically f i depends
on a subset of components that we denote dep(f i). In the case of Asynchronous
Discrete Networks (ADN), a transition relation →ADN⊆ F× F is defined such that
x →ADN x′ if and only if there exists a unique i ∈ �1;n� such that x′[i] = f i(x) and
∀j ∈ �1;n�, j �= i, x′[j] = x[j], i.e. one and only one component has been updated.
This is formalised in Def. B.1.

Definition B.1 [Asynchronous Discrete Network (ADN)] An ADN is defined by a
couple (F, 〈f1, . . . , fn〉) where F = F1 × · · · × Fn, and ∀i ∈ �1;n�, f i : F → Fi with
Fi = �1; li�. Given two states x, x′ ∈ F, the transition relation →ADN is given by

x →ADN x′ ⇐⇒ ∃i ∈ �1;n�, f i(x) = x′[i] ∧ ∀j ∈ �1;n�, j �= i, x[j] = x′[j] ,

where x[i] is the i-th component of x. We note dep(f i) ⊆ �1;n� the set of components
on which the value of f i depends: ∀x, x′ ∈ F such that ∀j ∈ dep(f i), x[j] = x′[j],
necessarily f i(x) = f i(x′).

Let us denote the encoding of the ADN (F, 〈f1, . . . , fn〉) in Process Hitting with 2

classes of priorities by PH(F, 〈f1, . . . , fn〉) (Def. B.2). For each component i ∈ �1;n�

of the ADN, two sorts are built: ai acting for the component value, and f i acting
for a cooperative sort between the components dep(f i). Sorts ai have one process aik
per element in k ∈ Fi. Sorts f i have one process f i

ς per state ς ∈ ×
j∈dep(f i)

Laj . Two

classes of actions are then defined: H(1) is the set of actions updating the cooperative
sorts according to the current state of the components: if j ∈ dep(f i), ajk hits each
process f i

ς where ς[aj] �= ajk to make it bounce to the process f i
ς�ajk

. H(2) is the set

M. Folschette et al. / Electronic Notes in Theoretical Computer Science 299 (2013) 33–51 49

of actions encoding the transitions in the ADN: f i
ς hits the processes of sort ai to

make them bounce to the process aik′ if and only if k′ = f i(�ς�); �ς� being the ADN
state corresponding to the PH (partial) state ς (note that f i(�ς�) is fully defined
because �ς� specifies the state for all the components in dep(f i)).

Definition B.2 PH(F, 〈f1, . . . , fn〉) = (Σ,L, (H(1),H(2))) is the Process Hitting
with 2 classes of priority encoding the ADN (F, 〈f1, . . . , fn〉), with:

• Σ = {a1, . . . , an} ∪ {f1, . . . , fn}, the sorts for components (ai) and cooperative
sorts (f i);

• L = ×
i∈�1;n�

Lai × ×
i∈�1;n�

Lf i , where Lai = {ai0, . . . , aili}, and Lf i = {f i
ς | ς ∈

×
j∈dep(f i)

Lai} if dep(f i) �= ∅, otherwise Lf i = {f i
∅};

• H(1) = {ajk → f i
ς � f i

ς′ | i ∈ �1;n� ∧ j ∈ dep(f i) ∧ ajk ∈ Laj ∧ f i
ς ∈ Lf i ∧ ς[aj] �=

ajk ∧ ς ′[aj] = ajk ∧ (ς ′[al] = ς[al], ∀l ∈ �1;n�, l �= j)}, the set of actions with priority
1 that update cooperative sorts;

• H(2) = {f i
ς → aik � aik′ | i ∈ �1;n�∧f i

ς ∈ Lf i∧aik ∈ Lai∧k �= k′∧f i(�ς�) = k′}, the
set of actions with priority 2 for updating the components using their respective
discrete maps. �ς� is defined below.

Given a state s ∈ L of the Process Hitting, �s� = x is the corresponding state in the
ADN: ∀i ∈ �1;n�, s[ai] = aik ⇒ x[i] = k.
Given a state x ∈ F of the ADN, �x� = s is the corresponding state in the Process
Hitting: ∀i ∈ �1;n�, x[i] = k ⇒ s[ai] = aik and ∀i ∈ �1;n�, s[f i] = f i

ς with f i
ς ∈ Lf i

and ∀j ∈ dep(f i), ς[j] = s[aj].

Theorem B.3 states the weak bisimulation relation between an ADN and its
encoding in PH with 2 classes of priorities. Intuitively, actions updating cooperative
sorts being prioritised, actions updating component sorts follow strictly the possible
transitions of the ADN.

Theorem B.3 ((F, 〈f1, . . . , fn〉) ≈ PH(F, 〈f1, . . . , fn〉))
(i) ∀x, x′ ∈ F, x →ADN x′ =⇒ �x� →∗

PH �x′�, where →∗
PH is a finite sequence of

→PH transitions.

(ii) ∀s, s′ ∈ L, s →PH s′ =⇒ �s� = �s′� ∨ �s� →ADN �s′� .

Proof (i) From Def. B.1, x →ADN x′ ⇒ ∃i ∈ �1;n�, f i(x) = x′[i] ∧ ∀j ∈ �1;n�, i �=
j, x[j] = x′[j]. Let us assume (without loss of generality) that f i(x) = k′, x[i] = k

and ς ∈ ×
j∈dep(f i)

Laj such that ∀j ∈ dep(f i), ς[j] = ajx[j]. From Def. B.2, h = f i
ς →

aik � aik′ ∈ H(2). From the definition of �x�, aik ∈ �x� and f i
ς ∈ �x�; moreover, as

there is no action in H(1) applicable in �x�, h is applicable in �x�: �x� →PH �x� · h.
In �x� ·h, the only applicable actions of priority 1 are those having aik′ as hitter and
hitting cooperative sorts, giving a finite number of transitions towards �x′�.

(ii) s →PH s′ only if there exists an action h applicable in s such that s · h = s′.
If prio(h) = 1, then, by definition of H(1), �s� = �s′�. If prio(h) = 2, then ∀i ∈ �1;n�,

M. Folschette et al. / Electronic Notes in Theoretical Computer Science 299 (2013) 33–5150

if s[f i] = f i
ς , then, ∀j ∈ dep(f i), ς[aj] = s[aj]. Let i ∈ �1;n� such that s[ai] �= s′[ai]

(i is unique for this transition). By Def. B.2, if s′[ai] = aik′ , necessarily f i(�s�) = k′,
hence �s� →ADN �s′�. �

M. Folschette et al. / Electronic Notes in Theoretical Computer Science 299 (2013) 33–51 51

	Introduction
	The Process Hitting Framework
	Definition of the Process Hitting with k classes of priorities
	Modelling cooperation
	Restrictions
	Consequences of the restrictions

	Static Analysis
	Preliminary definitions
	Under-approximation
	Reachability of a state

	Large-scale Biological Example
	Discussion & Conclusion
	References
	Proof of Under-approximation (Theorem 3.11)
	Weak Bisimulation of Asynchronous Discrete Networks (Subsect. 2.2)

